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Crystals of the title compound, C6H4BrI, were obtained by

growth on a two-dimensional self-assembled monolayer

template. Single-crystal X-ray diffraction at 110 K revealed a

centrosymmetric structure in which the center of the benzene

ring lies on an inversion center and the halogen atoms are

statistically disordered. The monoclinic structure reported

here is isostructural with p-dibromobenzene but not with p-

diiodobenzene.

Comment

The crystal structures of p-dihalobenzenes (X–C6H4–Y, where

X and Y are Cl, Br or I) have interested crystal chemists for

several decades, largely for reasons related to understanding

substituent effects, solid-state miscibility and phase

transformations (Klug, 1947; Prasad & Stevens, 1977). A large

number of p-dihalobenzenes adopt isostructural P21/c mono-

clinic structures at room temperature, including the symme-

trical p-dichlorobenzene (Estop et al., 1997) and p-

dibromobenzene. Also isostructural are the unsymmetrical

dihalo compounds p-bromochlorobenzene (Klug, 1947) and

p-chloroiodobenzene, reported most recently by Meriles et al.

(1999). While the latter two compounds formally lack a center

of inversion, centrosymmetric packing is achieved through the

superposition and statistical disorder of the halogen substi-

tuents. In contrast, p-diiodobenzene adopts an entirely

different orthorhombic Pbca structure at room temperature

(Alcobe et al., 1994). While both p-dichlorobenzene and

p-diiodobenzene are known to undergo phase transformations

at higher temperatures (Housty & Clastre, 1957; Alcobe et al.,

1994), their structures are never identical.

The van der Waals radii for halogen substituents increase in

the order Cl (1.81 Å) < Br (1.95 Å) < I (2.16 Å) (Pauling,

1940). Given the similarity in Cl and Br substituent sizes, it is

perhaps not surprising that the unsymmetrical p-bromo-

chlorobenzene derivative would be isostructural with the

other symmetrical monoclinic structures. It is somewhat less

obvious in the case of p-bromoiodobenzene whether the

compound would adopt a monoclinic structure like

p-dibromobenzene, an orthorhombic structure like p-diiodo-

benzene, or a different packing arrangement entirely.

A full single-crystal structure of p-bromoiodobenzene, (I),

has not previously been reported to our knowledge. Prasad &

Stevens (1977) reported the unit-cell parameters for this
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compound as a = 14.96, b = 5.89 and c = 4.25 Å, and � = 99.1�,

based on single-crystal X-ray precession photographs

obtained at room temperature. Calvet et al. (1992) more

recently reported its space group as P21/a, with a = 16.196, b =

5.872 and c = 4.233 Å, and � = 113.86�, based on room-

temperature powder diffraction data. The unit-cell parameters

of our structure obtained at 110 K agree more closely with

those of Prasad & Stevens.

Like the other known unsymmetrical dihalobenzenes, the

structure of (I) was solved in the space group P21/c. The

halogen-atom positions are related by an inversion center and

are therefore statistically disordered. The observed C—X

bond length of 2.011 Å is consistent with this, as it is longer

than a typical C—Br bond (1.899 Å) but shorter than a C—I

bond (2.095 Å). We note that the elongated displacement

parameters of the C atoms suggest that the benzene ring in

each disorder component actually lies slightly to one side of

the inversion center. Attempts to model whole-molecule

disorder in order to resolve this difference proved unsuc-

cessful. While one cannot completely discount the possibility

of halogen ordering within domains of a single crystal, the

diffraction data alone can neither prove nor disprove this

hypothesis.

Our repeated attempts to grow p-bromoiodobenzene from

a variety of conventional solvents (e.g. acetone, acetonitrile,

benzene, cyclohexane, dimethyl sulfoxide, dioxane, ethanol,

ethyl acetate, heptane, hexane, hexanes, methanol, dichloro-

methane, nitromethane, propan-1-ol, propan-2-ol, toluene,

xylenes) typically resulted in low-quality crystals. However,

crystal growth from heptane in the presence of a gold–thiol

self-assembled monolayer (SAM) template of either 40-nitro-

4-mercaptobiphenyl or 40-cyano-4-mercaptobiphenyl resulted

in transparent rectangular plates that were of sufficiently high

quality to allow full structure determination by single-crystal

diffraction methods. The preparation of these SAM templates

has been described elsewhere (Hiremath et al., 2004; Ulman,

2001). Crystals grown on these templates were always

observed to have the largest plate face, {001}, in contact with

the SAMs (Fig. 3). We ascribe this preferred growth orienta-

tion to favorable nitro� � �X (Allen et al., 1997) and cyano� � �X

(Desiraju & Harlow, 1989) interactions across the SAM–

crystal interface, which enable heterogeneous nucleation to

occur at lower solution supersaturations. Notably, of all the

low-index surfaces, {001} has the highest density of C—X

bonds projecting from the surface. Application of SAM

template-based growth methods may offer advantages for

other small molecule organics that are difficult to grow.
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Figure 1
A view of the molecule of (I), showing displacement ellipsoids at the 50%
probability level. [Symmetry code: (A) 1 � x, �y, 1 � x.

Figure 2
A packing diagram of the p-bromoiodobenzene crystal structure, viewed
along the a axis.

Figure 3
A photograph of a rectangular crystal of p-bromoiodobenzene grown on
a self-assembled monolayer. Scale bar = 0.5 mm.



Experimental

p-Bromoiodobenzene was purchased from Aldrich (98%) and used

without further purification. Single crystals were obtained in a few

days by slow room-temperature evaporation of heptane in the

presence of a (5 mm� 5 mm)2 self-assembled monolayer template of

either 40-nitro-4-mercaptobiphenyl or 40-cyano-4-mercaptobiphenyl.

The crystal melting point (363–364 K) was determined on a TA 2920

differential scanning calorimeter.

Crystal data

C6H4BrI
Mr = 282.90
Monoclinic, P21=c
a = 4.1120 (6) Å
b = 5.7936 (8) Å
c = 14.931 (2) Å
� = 97.301 (11)�

V = 352.83 (9) Å3

Z = 2

Dx = 2.663 Mg m�3

Mo K� radiation
Cell parameters from 2165

reflections
� = 2.8–32.6�

� = 10.09 mm�1

T = 110 K
Plate, colorless
0.20 � 0.10 � 0.02 mm

Data collection

Oxford Xcalibur3 diffractometer
! scans
Absorption correction: numerical

(CrysAlis RED; Oxford
Diffraction, 2005; Clark & Reid,
1995)
Tmin = 0.182, Tmax = 0.652

2583 measured reflections

882 independent reflections
772 reflections with I > 2�(I)
Rint = 0.023
�max = 28.3�

h = �5! 3
k = �7! 7
l = �18! 19

Refinement

Refinement on F 2

R[F 2 > 2�(F 2)] = 0.023
wR(F 2) = 0.059
S = 1.11
882 reflections
46 parameters
H-atom parameters constrained

w = 1/[�2(Fo
2) + (0.0342P)2

+ 0.3465P]
where P = (Fo

2 + 2Fc
2)/3

(�/�)max = 0.002
��max = 1.06 e Å�3

��min = �0.67 e Å�3

H atoms were positioned geometrically and refined as riding, with

C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell

refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduc-

tion: CrysAlis RED; program(s) used to solve structure: SHELXTL

(Sheldrick, 2000); program(s) used to refine structure: SHELXTL;

molecular graphics: SHELXTL; software used to prepare material

for publication: SHELXTL.
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